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We apply a hybrid molecular dynamics and mesoscopic simulation technique to study the steady-state
sedimentation of hard sphere particles for Peclet number �Pe� ranging from 0.08 to 12. Hydrodynamic back-
flow causes a reduction of the average sedimentation velocity relative to the Stokes velocity. We find that this
effect is independent of Pe number. Velocity fluctuations show the expected effects of thermal fluctuations at
short correlation times. At longer times, nonequilibrium hydrodynamic fluctuations are visible, and their
character appears to be independent of the thermal fluctuations. The hydrodynamic fluctuations dominate the
diffusive behavior even for modest Pe number, while conversely the short-time fluctuations are dominated by
thermal effects for surprisingly large Pe numbers. Inspired by recent experiments, we also study finite sedi-
mentation in a horizontal planar slit. In our simulations distinct lateral patterns emerge, in agreement with
observations in the experiments.
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I. INTRODUCTION

The steady-state sedimentation of spheres in a viscous
medium at low Reynolds �Re� number is an important model
problem in nonequilibrium statistical mechanics, exhibiting
subtle and interesting physics �1–3�. Some properties are
relatively straightforward to determine. For example, the
sedimentation velocity VS

0 of a single sphere was calculated
over 150 years ago by Stokes �4� to be VS

0= 2
9ga2��c−�� /�,

where a and �c are the radius and density of the sphere, g is
the gravitational acceleration, and � and � are the density
and viscosity of the fluid. On the other hand, even the first-
order effect of finite volume fraction �= 4

3�nca
3 �nc is the

particle number density� was not calculated until 1972 when
Batchelor �5� showed that

VS = VS
0�1 − 6.55� + �O�2�� . �1�

The effect of a finite volume fraction on sedimentation is
dominated by long-ranged hydrodynamic forces that decay
with interparticle distance r as slowly as r−1. These forces are
hard to treat analytically because they can easily lead to spu-
rious divergences. Equation �1� also highlights the strong
effect of the hydrodynamic forces. For example, a naive ap-
plication of this lowest order result would suggest that all
sedimentation should stop at ��0.15. Of course this is not
true since there are important higher-order corrections in �
whose calculation remains an active topic of research �6�.

If the influence of hydrodynamics on the average sedi-
mentation velocity at finite volume fraction is nontrivial to
calculate, then the fluctuations around that average would
appear even more formidable to determine. In a remarkable
paper, Caflisch and Luke �7� used a simple scaling argument
to predict that, for a homogeneous suspension, the velocity
fluctuations �V=V−VS should diverge as ��V2��L, where L
is the smallest container size. This surprising result stimu-
lated much theoretical and experimental work, as well as no
small amount of controversy �2�. Particle velocimetry experi-
ments clearly show the existence of large-scale velocity fluc-

tuations, which manifest as “swirls” �8–12�. The experiments
of Nicolai et al. �8� and Segrè et al. �9� suggest that while for
small containers the velocity fluctuations do indeed grow
linearly in L, for larger containers the velocity fluctuations
saturate �see, however, �11,13��. The reasons �if any� that this
should be observed have been the subject of sustained theo-
retical debate. It was shown by Koch and Shaqfeh �14� that
hydrodynamic interactions can be screened if the colloids
exhibit certain long-ranged correlations reminiscent of those
found for electrostatic systems. A number of theories have
been proposed to generate such correlations in the bulk, in-
cluding a coupled convective-diffusion model by Levine et
al. �15� that generates a noise-induced phase transition to a
screened phase. Another class of theories focuses on the con-
tainer walls. For example Hinch �16� has argued that the
bottom of a vessel will act as a sink for fluctuations, a pre-
diction that appears to be confirmed by computer simulations
�17,18�. Other authors have emphasized the importance of
stratification �12,19–22� and polydispersity �18,23�.

Most of the theoretical studies of sedimentation described
above have focused on the non-Brownian limit where ther-
mal fluctuations are negligible. This can be quantified by
defining the Peclet number �Pe�

Pe =
VS

0a

D0
=

Mbga

kBT
, �2�

where D0 is the equilibrium self-diffusion constant and Mb

= 4
3�a3��c−�� is the particle’s buoyant mass. The non-

Brownian limit then corresponds to Pe=�. Because Pe scales
as ��c−��a4, the very large Pe numbers needed to approxi-
mate the non-Brownian limit are easily achieved by increas-
ing particle size.

The Pe number is directly related to the gravitational
length lg=kBT / �Mbg�=a /Pe. For this reason, the criterion
Pe�1 is often used to define the colloidal regime since,
roughly speaking, one would expect from the barometric law
that particles would then be dispersed throughout the solu-
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tion. For example, for polystyrene spheres in water Pe
=O�1� for a�1 	m. In experiments, the density difference

�=�c−� can be adjusted by density matching so that the Pe
number can also be tuned quite accurately for a given a.

In contrast to most previous theoretical and computational
studies, which have focused on the non-Brownian Pe=�
limit, in this paper we study steady-state sedimentation at the
moderate Pe numbers relevant for the colloidal regime. In
this regime the particles experience both random thermal
fluctuations �caused by random collisions with solvent mol-
ecules� and deterministic hydrodynamic fluctuations �fluc-
tuations in the sedimentation velocity of individual colloids
caused by multibody hydrodynamic interactions�. A key
question will be how these two kinds of fluctuations interact.

We employ stochastic rotation dynamics �SRD� �24–26�
to describe the solvent, and a molecular dynamics �MD�
scheme to propagate the colloids. Such a hybrid technique
was employed by Malevanets and Kapral �27�, and recently
used to study colloidal sedimentation by ourselves �28� and
by Hecht et al. �29�. In Sec. II we briefly recap the salient
details of our simulation method.

In Sec. III we study the average sedimentation velocity.
Our principle finding is that this follows exactly the same
trend with volume fraction � as found for the Pe=� non-
Brownian limit. In other words, the effects of backflow are
completely dominated by the hydrodynamic interactions
�HI�, even when the Brownian forces are, on average, much
stronger. In Secs. IV and V we investigate in some detail the
velocity fluctuations ��V2�. We find that the thermal and hy-
drodynamic fluctuations appear to act independently of each
other. Their effects are additive, at least in the accessed simu-
lation regime, where the hydrodynamic fluctuations are un-
screened. Some of these results have appeared earlier �28�,
but here they are treated in much more detail. In Sec. VI we
calculate the self-diffusion coefficient, highlighting the ef-
fects of hydrodynamic dispersion. In Sec. VII we briefly con-
sider the case of finite sedimentation in a horizontal planar
slit. We observe distinct lateral patterns, in agreement with
recent laser scanning confocal microscopy. In Sec. VIII we
discuss the importance of thermal fluctuations over hydrody-
namic fluctuations. Finally, in Sec. IX we present our con-
clusions.

II. HYBRID MD-SRD COARSE-GRAINED
SIMULATION METHOD

The time- and length-scale differences between colloidal
and solvent particles are enormous: a typical colloid of di-
ameter 1 	m will displace on the order of 1010 water mol-
ecules. Clearly, some form of coarse graining of the solvent
is necessary. In this paper we use SRD to efficiently describe
the dynamics of the solvent. The colloids are coupled to the
solvent through explicit interaction potentials. We have re-
cently performed an extensive validation of this method �26�.
We will therefore only reproduce the most important conclu-
sions.

A. Solvent-solvent interactions

In SRD, the solvent is represented by a large number Nf
of pointlike particles of mass mf. We will call these fluid

particles, with the caveat that, however tempting, they should
not be viewed as some kind of composite particles or clusters
made up of the underlying molecular fluid. The particles are
merely a convenient computational device to facilitate the
coarse graining of the fluid properties �26�.

In the first step, the positions and velocities of the fluid
particles are propagated by integrating Newton’s equations
of motion. The forces on the fluid particles are generated by
external forces generated by gravity, walls, or colloids. Di-
rect forces between pairs of fluid particles are, however, ex-
cluded; this is the main reason for the efficiency of the
method. After propagating the fluid particles for a time 
tc,
the second step of the algorithm simulates the collisions be-
tween fluid particles. The system is partitioned into cubic
cells of volume a0

3. The velocities relative to the center of
mass velocity vcm of each separate cell are then rotated,

vi � vcm + R�vi − vcm� . �3�

R is a rotation matrix which rotates velocities by a fixed
angle � around a randomly oriented axis. The angle � can be
anything between 0 and 180 degrees, but too small angles
should be avoided because in the limit of zero angle there are
no collisions and thermal equilibrium cannot be achieved.
The aim of the collision step is to transfer momentum be-
tween the fluid particles. The rotation procedure can thus be
viewed as a coarse graining of particle collisions over time
and space. Because mass, momentum, and energy are con-
served locally, the correct �Navier-Stokes� hydrodynamic
equations are captured in the continuum limit, including the
effect of thermal noise �24�.

Ihle and Kroll �25� pointed out that at low temperatures or
small collision times 
tc the transport coefficients of SRD
show anomalies. These anomalies are caused by the fact that
fluid particles in a given cell can remain in that cell and
participate in several collision steps. They showed that under
these circumstances the assumption of molecular chaos and
Galilean invariance are incorrect. They also showed how the
anomaly can be entirely cured by applying a random shift of
the cell coordinates before the collision step. It is then pos-
sible to analytically calculate the shear viscosity of the SRD
fluid �30�. Such expressions are very useful because they
enable us to efficiently tune the viscosity of the fluid, without
the need of trial and error simulations.

B. Colloid-colloid and colloid-solvent interactions

In the simulation, colloidal spheres of mass M are propa-
gated through the velocity Verlet algorithm �31� with a time
step 
tMD. The colloids are embedded in the fluid, and inter-
act with the fluid particles through a repulsive �Weeks-
Chandler-Andersen� potential,

�cf�r� = 	4

��cf

r
�12

− ��cf

r
�6

+
1

4

 �r � 21/6�cf� ,

0 �r � 21/6�cf� .
�

�4�

The colloid-colloid interaction is represented by a similar,
but steeper, repulsive potential,
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�cc�r� = 	4

��cc

r
�48

− ��cc

r
�24

+
1

4

 �r � 21/24�cc� ,

0 �r � 21/24�cc� .
�
�5�

As long as the colloid-colloid interactions are hard enough,
the precise way in which the interactions are achieved does
not matter. Here we have chosen the exponents �48 and 24�
as high as possible, yet low enough to enable accurate inte-
gration of the equations of motion with a time step 
tMD
close to the collision time interval 
tc. Details can be found
in Ref. �26�.

Because the surface of a colloid is never perfectly smooth,
collisions with fluid particles transfer angular as well as lin-
ear momentum. These interactions may be approximated by
stick boundary conditions. We have studied several imple-
mentations of stick boundary conditions for spherical col-
loids �32� and derived a version of stochastic boundary con-
ditions which reproduce linear and angular momentum
correlation functions that agree with Enskog theory for short
times and hydrodynamic mode-coupling theory for long
times. Nevertheless, to comply with Ref. �24�, in this paper
we use the radial interactions described in Eq. �4�. These do
not transfer angular momentum to a spherical colloid and so
induce effective slip boundary conditions. For many of the
hydrodynamic effects we will discuss here the difference
with stick boundary conditions is quantitative, not qualita-
tive, and also well understood. For example, we have con-
firmed that the flowfield around a single sedimenting sphere
decays, to first order, such as a / �2r� for a slip boundary
sphere �26�, whereas it decays similar to 3a / �4r� for a stick
boundary sphere.

To avoid �uncontrolled� depletion forces, we routinely
choose the colloid-fluid interaction range �cf slightly below
half the colloid diameter �cc /2 �26�. There is no a priori
reason why the hydrodynamic radius should be exactly half
the particle-particle hard-core diameter for a physical system.
For charged systems, for example, the difference may be
substantial. An additional advantage of this choice is that
more fluid particles will fit in the space between two col-
loids, and consequently lubrication forces will be more ac-
curately represented between the hydrodynamic cores. We
have confirmed that with our parameters SRD resolves the
analytically known lubrication forces down to gap widths
as small as a /5. The agreement at small distances is caused
also by repetitive collisions of the fluid particles trapped be-
tween the two surfaces. But at some point the lubrication
force will break down: for example, when only one or two
SRD particles are left in the gap between two surfaces, the
SRD fluid no longer represents a continuous viscous me-
dium. An explicit correction could be applied to correctly
resolve these forces for very small distances, as was imple-
mented by Nguyen and Ladd �33� for lattice Boltzmann dy-
namics. However, in this paper our choice of �cf is small
enough for SRD to sufficiently resolve lubrication forces up
to the point where the direct colloid-colloid interactions start
to dominate �26�.

C. Time scales and hydrodynamic numbers

Many different time scales govern the physics of a colloid
of mass M embedded in a solvent. Hydrodynamic interac-
tions propagate by momentum diffusion and also by sound.
The sonic time is the time it takes a sound wave to travel the
radius of a colloid, tcs=a /cs, where cs is the speed of sound.
The kinematic time, on the other hand, is the time it takes
momentum to diffuse over the radius of a colloid, ��=a2 /�,
where � is the kinematic viscosity of the solvent. For a
colloid of radius a=1 	m in water, �cs�10−9 s and
���10−6 s.

The next time scale is the Brownian time �B=M /�S,
where �S=6��a is the Stokes friction for stick boundary
conditions, or 4��a for slip boundary conditions. It mea-
sures the time for a colloid to lose memory of its velocity
�see, however, �26��. The most relevant time scale for
Brownian motion is the diffusion time �D=a2 /D0, which
measures how long it takes for a colloid to diffuse over a
distance a in the absence of flow. For a colloid of a=1 	m in
water, �D�5 s.

When studying sedimentation, the Stokes time is the time
it takes a single colloid to advect over its own radius, tS
=a /VS

0. The Stokes time and the diffusion time are related by
the Peclet number: Pe=�D / tS. If Pe�1, then the colloid
moves convectively over a distance much larger than its ra-
dius a in the time �D that it diffused over the same distance.
For Pe�1, on the other hand, the opposite is the case, and
the main transport mechanism is diffusive. It is sometimes
thought that for low Pe numbers hydrodynamic effects can
safely be ignored, but this is not always true, as we will
show.

In summary, in colloidal suspensions we encounter a
range of time scales, ordered similar to tcs��B���

� ��D , tS�, where tS may be smaller or larger than �D depend-
ing on Pe, and where we have assumed �c�� to justify �B
���. The entire range of time scales can span more than 10
orders of magnitude. Thankfully, it is not necessary to ex-
actly reproduce each of the different time scales in order to
achieve a correct coarse graining of colloidal dynamics. We
can “telescope down”�26� the relevant time scales to a hier-
archy which is compacted to maximize simulation efficiency,
but sufficiently separated to correctly resolve the underlying
physical behavior. Keeping the relevant time scales an sepa-
rated by about an order of magnitude should suffice.

Similar arguments can be made for various hydrodynamic
numbers. For example, the Re number of sedimenting colloi-
dal particles is normally very low, on the order of 10−5 or
less. But there is no need to take such a low value since
many relative deviations from the zero-Re Stokes regime
scale with Re2. Exactly how big an error one makes depends
on what one is investigating, but for our purposes we will
take Re�0.4 as an upper bound. We have shown �26� that
for the friction on a sphere inertial effects are unimportant up
to Re�1. We note that our upper bound on Re also ensures
that the time hierarchy condition ��� �tS ,�D� is fulfilled. In
principle Pe can be whatever we like as long as Re remains
low and the hierarchy is obeyed.

To achieve the hierarchy of time scales and hydrodynamic
numbers, in our simulations we choose an average number of
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fluid particles per collision volume equal to �=5, a collision
interval 
tc=0.1 �in units of t0=a0

�mf /kBT�, and a rotation
angle �=� /2, leading to a kinematic viscosity �=0.5 a0

2 / t0.
We choose a colloidal mass M =125mf, and interaction pa-
rameters �cf =2a0, �cc=4.3a0, and 
=2.5kBT. For an exten-
sive discussion of the choice of parameters, see Ref. �26�. We
have verified that this choice leads to a small relative error in
the full velocity field, and that we can quantitatively calcu-
late the observed friction on a colloid �26�. Note that this
friction is somewhat lower than expected on the basis of a
hydrodynamic radius set equal to �cf =2a0. This is due to
additional Enskog friction effects, where the different contri-
butions to the friction add “in parallel,” as explained in Ref.
�26�. The resulting effective hydrodynamic radius a=1.55a0
will be used throughout this paper. We note that, because
a��cc /2, we cannot study hydrodynamic volume fractions
� far beyond 0.25. Beyond this limit, steric interactions be-
tween the colloids start to dominate. We therefore limit our-
selves to low volume fractions ���0.13�. The time scales in
our simulations are well separated: tcs=1.2t0, �B=2.5t0,
��=4.8t0, and �D=120t0.

III. AVERAGE SEDIMENTATION VELOCITY

Sedimentation simulations were performed in a periodic
box of dimensions Lx=Ly =32a0 and Lz=96a0 �approxi-
mately 21�21�62a�, with periodic boundaries in all direc-
tions, containing N=8 to 800 colloids. The number of SRD
particles was adjusted so that the free volume outside the
colloids contained an average of 5 particles per coarse-
graining cell volume a0

3. This corresponds to a maximum of
Nf �5�105 SRD particles. A gravitational field g, applied to
the colloids in the z direction, was varied to produce different
Peclet numbers, ranging from Pe=0.08 to Pe=12. At the
same time the Reynolds numbers ranged from Re=0.003 to
0.4. The absence of walls necessitates an additional con-
straint to keep the system from accelerating indefinitely. One
could for example constrain the center-of-mass of the solvent
or the center-of-mass of the entire system. However, in most
experiments a wall is present at the bottom of the vessel
�sufficiently tall vessels are needed to study steady-state sedi-
mentation�. The wall at the bottom and the incompressibility
of the fluid together enforce a total volume flux of zero at
every height in the vessel. Because of the density difference
between colloids and fluid this leads to a motion of the
center-of-mass. To stay close to the experimental situation,
the average sedimentation velocity VS reported here is ob-
tained in a frame of reference in which the downward vol-
ume flux �cVS of colloids is exactly balanced by the upward
flux �1–�c�Vf of fluid. Here �c= � 4

3� N�cc
3 � / �LxLyLz� is the

volume fraction excluded to the solvent by the presence of
the colloids, and Vf is the average velocity of the fluid.

Right after the simulations start, the colloidal positions
and velocities have not yet acquired their steady-state distri-
butions. We monitored block averages �in time� of the sedi-
mentation velocity and the behavior of sedimentation veloc-
ity fluctuations, which will be discussed in the next section.
We verified that there was no drift in these properties after
about 100 Stokes times tS, corresponding to sedimentation

down the height of about two periodic boxes. The absence of
any drift indicated that the suspensions were now in steady
state.

The simulations were subsequently run between 200 tS for
Pe=0.08 to 30 000 tS for Pe=12. To check that our system is
large enough, we performed some runs for 1.5 and 2 times
the box size described above, finding no significant changes
in our conclusions.

The average sedimentation velocity VS for different Peclet
numbers and system sizes as a function of hydrodynamic
packing fraction �= 4

3�nca
3 is shown in Fig. 1. The results

are normalized by the Stokes velocity VS
0 �the sedimentation

velocity of a single particle in the simulation box�, resulting
in the so-called hindered settling function. At low densities
the results are consistent with the result found by Batchelor
�5�, while at higher densities they compare well with a num-
ber of other forms derived for the Pe→� limit. In most
experiments the hindered settling function is well described
by the semiempirical Richardson-Zaki law VS /VS

0= �1−��n,
with n ranging between 4.7 and 6.55 �1,3�. Our results fall
between these two extremes. The results compare particu-
larly well with a theoretical prediction by Hayakawa and
Ichiki �6�, taking higher-order hydrodynamic interactions
into account.

One might naively expect that the effect of HI becomes
weaker for Pe�1. Taking into account only Brownian forces
would result in VS=VS

0�1−�� �because of flux conservation�,
which heavily underestimates backflow effects. However, we
observe that the results for all Peclet numbers 0.08�Pe
�12 lie on the same curve. We emphasis that these results
are normalized by the Stokes velocity VS

0 of a single sphere,
which itself decreases with decreasing Peclet number. The
important point is that the additional hindrance caused by
hydrodynamic interactions is observed to be unaffected by
the actual Pe number. A reason for this could be that the
average sedimentation velocity is determined predominantly
by the �time-averaged� distribution of distances between the
colloids. If this is so, then the particle motion generated by
the external field must not lead to a significant change in the
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FIG. 1. Average sedimentation velocity, VS normalized by the
Stokes velocity VS

0, as a function of volume fraction � for various
Peclet numbers and system sizes. Dashed lines correspond to the
semiempirical Richardson-Zaki law �1−��n, with n=4.7 for the up-
per and n=6.55 for the lower line. The dotted line is another theo-
retical prediction taking higher order HI into account �6�. Ignoring
hydrodynamics leads to VS /VS

0=1−� �dashed-dotted line�.
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microstructure. That this is indeed the case is shown in Fig.
2, where the main plot shows the colloidal radial distribution
function at volume fraction �=0.04 for Peclet numbers 0.2
�stars� and 12 �circles�. For Pe=0.2 the result is indistin-
guishable from equilibrium results, and for Pe=12, despite
the fact that the external field is quite strong, the average
number of neighboring particles at a certain distance from a
specific particle changes only very slightly as compared to
equilibrium. The inset of Fig. 2 shows the structure factor for
the same system. At Pe=12, small deviations are found for
perpendicular �open circles� and parallel �closed circles�
wave vectors, but again the differences are not very large.
Here we already note that all of these systems are in the
unscreened regime.

IV. SPATIAL CORRELATIONS IN FLUCTUATIONS

We next discuss velocity fluctuations around the average.
In colloidal systems the instantaneous velocity fluctuations
�V=V−Vs are dominated by thermal fluctuations, with a
magnitude determined by equipartition,


VT
2 = kBT/M . �6�

To disentangle the hydrodynamic fluctuations from thermal
fluctuations, we describe spatial and temporal correlations in
the velocity fluctuations. The spatial correlation of the z
component �parallel to the sedimentation direction� of the
velocity fluctuations can be defined as

Cz�r� � ��Vz�0��Vz�r�� , �7�

where �¯� represents an average over time and over all col-
loids. The distance vector r is taken perpendicular to sedi-
mentation, Cz�x�, or parallel to it, Cz�z�. Note that we will not
normalize the correlation functions by their initial values.
Rather, we will normalize them by values which have a more

physical meaning, such as the squared sedimentation veloc-
ity VS

2, or the thermal fluctuation strength kBT /M.
In Fig. 3 we plot Cz�r�, which shows a positive spatial

correlation along the direction of flow, and an anticorrelation
perpendicular to the flow, very much similar to that observed
in the experiments of Nicolai et al. �8�. The inset of Fig. 3�a�
shows that at Pe=0.8 the correlation in the perpendicular
direction, Cz�x�, is almost negligible compared with the ther-
mal fluctuation strength kBT /M, whereas for larger Pe, dis-
tinct regions of negative amplitude emerge, which grow with
increasing Pe. Similarly, the inset of Fig. 3�b� shows corre-
lations in the parallel direction that rapidly increase with Pe.
For the highest Peclet numbers studied �4�Pe�12�, the am-
plitudes of these correlations grow proportionally to VS

2, as
shown in the main plots of Fig. 3. Unfortunately, because the
division by VS

2 amplifies the statistical noise, we are unable to
verify whether this scaling persists for Pe�4. The minimum
in Fig. 3�a� is at about half the box width �this is also the
reason why no data points could be collected for x�15a�.
This suggests that the velocity fluctuations are unscreened
and only limited by our box dimensions �see �34��. We con-
firm this in Fig. 4, where it is seen that the correlation length
scales linearly with box dimensions.

V. TEMPORAL CORRELATIONS IN FLUCTUATIONS

Similarly to the spatial correlations of the previous sec-
tion, the temporal correlation of the z component of the ve-
locity fluctuations can be defined as

Cz�t� � ��Vz�0��Vz�t�� , �8�
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FIG. 2. Main plot: Colloid radial distribution function g�r� for
�=0.04 at low �0.2� and high �12� Peclet number. There is no
significant difference between the two g�r�’s. Inset: Structure factor
for the same systems. At Pe=12, small deviations are found for
perpendicular �open circles� and parallel �closed circles� wave
vectors.
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nent of the velocity fluctuations as a function of distance perpen-
dicular �a� and parallel �b� to the external field, for three different
volume fractions ��=0.02 �grey symbols�, �=0.04 �white�, �
=0.086 �black�� and different Peclet numbers. The correlation func-
tions are scaled with VS

2 to emphasize hydrodynamic fluctuations.
The insets show how Cz�r�, scaled with kBT /M, increases with Pe.
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where now t is a correlation time and �¯� denotes an aver-
age over all colloids and all time origins. Figure 5 shows the
temporal correlation functions along the direction of sedi-
mentation on a linear scale. Clearly the correlation is increas-
ing with increasing Pe number. To investigate this in more
detail, we plot the temporal correlation on a log-log and log-
linear plot in Fig. 6.

At very short times the velocity decorrelation is quantita-
tively described by Enskog dense-gas kinetic theory �35,36�,
which predicts the following decay:

lim
t→0

Cz�t� = 
VT
2 exp�− t�E/M� , �9�

where the Enskog friction coefficient is given by

�E =
8

3
�2�kBTMmf

M + mf
�1/2

��cf
2 . �10�

Equation �9� describes the velocity relaxation due to random
collisions with the solvent particles.

At intermediate times the temporal correlation follows the
well-known algebraic long-time tail

Clong�t� = Bt−3/2, �11�

associated with the fact that momentum fluctuations diffuse
away at a finite rate determined by the kinematic viscosity �.
Analytical mode-coupling calculations yield a prefactor B−1

=12�kBT�� /��3/2 �37�. This exactly fits the low Pe ��1� re-
sults in Fig. 6�a� with no adjustable parameters. We note that
similar agreement was found for the long-time tails for other
parameter choices �32� at equilibrium. Of course, these simu-
lations are all at finite Pe number, and so are out of equilib-
rium, but for small Pe the long-time tail dominates within the
simulation accuracy that we obtain.

In an experimental study on the sedimentation of non-
Brownian �Pe→�� particles, Nicolai et al. �8� found an ex-
ponential temporal relaxation of the form

Cz�t� = 
VH
2 exp�− t/�H� . �12�

This nonequilibrium hydrodynamic effect takes place over
much longer time scales than the initial exponential relax-
ation due to random collisions with the solvent particles, i.e.,
�H�M /�E. The double-logarithmic figure 6�a� shows that a
new mode of fluctuations becomes distinguishable in our
simulations for Pe�1. In the log-linear figure 6�b� the cor-
relation functions are scaled with VS

2 to highlight the non-
equilibrium hydrodynamic fluctuations. For Pe�8 the fluc-
tuations scale onto a single exponential master curve, similar
to the high-Pe experiments of Nicolai et al. �8�, whereas for
lower Pe deviations are seen. From the exponential fit to Eq.
�12�, we can estimate the relaxation time �H and the ampli-
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tude 
VH
2 of the hydrodynamic fluctuations. These are shown

in Fig. 7 for different volume fractions �, and in Fig. 8 for
different box sizes L /a. The results are consistent with a
scaling 
VH /VS��L� /a and �H / tS��L / ��a�.

These scalings can be understood by a simple heuristic
argument by Cunha et al. �38� akin to that used by Caflisch
and Luke �7�: Suppose we consider the box volume to con-
sist of two equally large parts, each with a typical linear
dimension of L. The average number of colloids in a volume
of size L3 is �N�=L3� / � 4

3�a3�. Of course the colloids are free
to move from one part to the other; the division is entirely
artificial. At low enough volume fraction � we assume that
the colloidal positions are described by random Poisson sta-
tistics. The typical fluctuation in the number of particles will
then be of order ��N�. The extra colloidal weight of order
��N�Mbg in one part of the box causes this part to sediment
faster than average. This is the hydrodynamic fluctuation re-
ferred to before. The extra colloidal weight is balanced by

the extra Stokes drag caused by the larger sedimentation ve-
locity, which is of the order of 6��L
VH. Making use of
VS=Mbg / �6��a�, we predict for the amplitude of the hydro-
dynamic fluctuations


VH
2 = VS

2 L�

4

3
�a

. �13�

This is consistent with our observation. Of course the hydro-
dynamic fluctuation does not persist indefinitely. It will deco-
rrelate on the order of the time needed to fall over its own
length, for it will then encounter and mix with a region of
average number density. The relaxation time of the hydrody-
namic fluctuation is therefore predicted to be

�H
2 �

L2


VH
2 =

4

3
�aL2

VS
2L�

= tS
2

4

3
�L

a�
, �14�

where we have used tS=a /VS.
The above scaling argument does not fix the prefactors.

Fitting with the data in Figs. 7 and 8 we find 
VH
�0.29VS���L /a��1/2 and �H�0.33tS���a /L��−1/2. It should
be noted that the above results concern the velocity fluctua-
tions parallel to the gravitational field �z�. In a similar way
we have estimated the perpendicular velocity fluctuations to
be characterized by 
VH,perp�0.16VS���L /a��1/2 and �H,perp

�0.15tS���a /L��−1/2. Note that the ratio of parallel to per-
pendicular velocity fluctuations is approximately 1.8. This is
in agreement with the experimental low � results on non-
Brownian spheres by Nicolai et al. �8� and by Segrè et al.
�9�, both of whom observed vertical fluctuations approxi-
mately twice the horizontal fluctuations in the same range of
volume fractions.

VI. DIFFUSION AND DISPERSION

The equilibrium self-diffusion of a colloidal particle is
related to its velocity correlation function through the fol-
lowing Green-Kubo equation:

D0�t� = �
0

t

�Vx���Vx�0��d� , �15�

where Vx is a Cartesian component of the colloidal velocity.
For large enough times t the integral D0�t� converges to the
equilibrium self-diffusion coefficient D0.

During sedimentation, the diffusion is enhanced by the
hydrodynamic fluctuations. In fact, the diffusion is no longer
isotropic but tensorial. Focusing first on the component par-
allel to gravity, we define the parallel diffusion coefficient
similarly to Eq. �15� as the large time limit of

Dz�t� = �
0

t

��Vz����Vz�0��d� . �16�

In Fig. 9 we show Dz�t� normalized by the equilibrium value
D0 for a range of Pe numbers. Note that even though the
hydrodynamic fluctuations may be small compared to C�0�,

0.01 0.10
φ

10
-1

10
0

10
1

τ H
/t

S

10
-1

10
0

10
1

∆v
H

/v
s

τH ~ φ-1/2

∆vH ~ φ1/2

L/a = 20.6

FIG. 7. Scaling of the hydrodynamic relaxation times �left scale�
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10 100

L/a

10
-1

10
0

10
1

τ H
/t

S

10
-1

10
0

10
1

∆v
H

/v
s

φ = 0.01

φ = 0.02

φ = 0.04

τH ~ (L/a)
1/2

∆vH ~ (L/a)
1/2

FIG. 8. Scaling of the hydrodynamic relaxation times �left scale�
and velocity fluctuation amplitudes �right scale� with box size L.
Straight lines are expected scalings for an unscreened system
�7,38�.

INTERPLAY BETWEEN HYDRODYNAMIC AND BROWNIAN… PHYSICAL REVIEW E 77, 011402 �2008�

011402-7



they nevertheless have a significant contribution to the diffu-
sivity because the time-scale �H is much longer than ��.

To understand the total diffusivity, we make the following
addition approximation:

Dz = D0 + DH, �17�

where D0 is equilibrium diffusion coefficient and DH the
dispersion due to nonequilibrium hydrodynamic fluctuations.
The former can be approximated as a sum of Stokes and
Enskog diffusion coefficients, see �26�. The nonequilibrium
hydrodynamic dispersion can be estimated using the previ-
ous scaling arguments,

DH � 
VH
2 �H � VSa�1/2�L

a
�3/2

. �18�

Taking the prefactors found in the previous section, and re-
writing VSa as Pe D0, we therefore predict

Dz = D0
1 + 0.03 Pe �1/2�L

a
�3/2
 �19�

for small enough, i.e., unscreened, systems. For small Pe�
�1� the self-diffusion coefficient is largely independent of
Pe and equal to D0, whereas for very large Pe��1� it be-
comes proportional to Pe. This is confirmed in Fig. 10 where
the dashed lines show the Pe and � dependence of Eq. �19�.

The diffusion in the plane perpendicular to gravity is also
enhanced by the hydrodynamic fluctuations, similar to Eq.
�19�, but with a smaller prefactor of 0.004 instead of 0.03
�not shown�. The ratio of hydrodynamic diffusivities,
DH /DH,perp�7 is similar to what is found in the experiments
of Nicolai et al. �8� for non-Brownian spheres.

Although our simulations are in the unscreened regime, it
is interesting to also consider the hydrodynamic contribution
to the diffusion coefficient in the screened regime. If we
apply the experimental fits of Segrè et al. �9� for 
VH and the
correlation length �, then the simple scaling arguments above
suggest that

DH � Pe D0, �20�

which is independent of �. The exact prefactor is hard to
determine in the screened regime. Nevertheless, an estimate
can be made if we assume that �H has the same prefactor in
the experiments as we find in our simulations. For example,
if we replace L /2, which measures the location of the mini-
mum of the perpendicular correlation functions, with �perp, its
value for the screened regime �9�, then we find DH,perp /D0
�1.1 Pe. For DH,parallel /D0 we expect a prefactor several
times larger. In the screened regime the hydrodynamic con-
tributions to the diffusion should dominate for Pe�1. In
practice, however, we expect that for many colloidal disper-
sions effects such as polydispersity �18� may temper the size
of the swirls, and thus reduce the hydrodynamic contribution
to diffusion. Similarly, for charged colloidal suspensions, the
effects of salt, co- and counterions may also significantly
temper the size of the hydrodynamic swirls �42–44�.

VII. FINITE SEDIMENTATION IN A HORIZONTAL
PLANAR SLIT

Up to this point we have focused on steady-state sedimen-
tation by applying periodic boundary conditions and giving
the system enough time to overcome transient flow effects.

One may wonder what happens if the particles are con-
fined and are not given enough time to reach steady state.
Very recently, Royall et al. �39� studied nonequilibrium sedi-
mentation of colloids in a horizontal planar slit, at a Peclet
number of order 1, using laser scanning confocal micros-
copy. Among other things, they measured the time evolution
of the one-dimensional colloid density profile ��z , t�, where
the z axis is normal to the horizontal plane. Two cases were
considered. In the first case an initially homogenized sample
was allowed to sediment to the bottom of the capillary. Good
agreement was found with a dynamical density functional
theory �DDFT� calculation that included a density-dependent
mobility function. In the second case they considered an
equilibrated sample turned upside down so that the previous
sediment suddenly finds itself at the top of the capillary. In
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this case sedimentation proceeds in an entirely different fash-
ion. A strong fingerlike inhomogeneity was observed, accom-
panied by mazelike lateral pattern formation.

Inspired by these experiments, we set up a box of size
180�180�60a0 �116�116�39a�, with periodic bound-
aries in the x and y direction, and with walls at the top and
bottom in the z direction. �This corresponds to a height of
about 32a, close to the experimental value of 36a.� We add
6500 colloids ���0.06� and apply an external field upwards
such that Pe=4. After reaching the equilibrium distribution,
at t=0 we suddenly reverse the field, again at Pe=4. We
observe a mazelike lateral pattern, Fig. 11 �most clearly vis-
ible at t=8�D�, which shows striking similarities to the ex-
perimental observations �39�. The characteristic length of the
mazelike lateral pattern is approximately equal to the height
of the slit. It has been suggested �39� that there may be a
relation between this phenomenon and the swirls observed in
steady-state sedimentation, but also that the swirls are remi-
niscent of a Rayleigh-Taylor-type instability in two layered
liquids, with the steep initial density gradient resembling a
�very diffuse� liquid-liquid interface. With the current data,
we cannot conclusively determine the origin of this instabil-
ity. Nevertheless it is gratifying that our simulations produce
such similar, and nontrivial, behavior as the experiments un-
der similar conditions. This can be viewed as an additional
validation of our simulation model.

In Fig. 12 we analyze the time evolution of the one-
dimensional density profile ��z , t�. The crystal-like layers at
the top plate for t�0 disappear and then reappear again at
the bottom of the plate. It would be interesting to compare
these results to calculations using DDFT. Since the latter

technique does not explicitly contain any long-ranged hydro-
dynamics, one would expect it to have difficulty in reproduc-
ing the swirls observed in the simulations and experiments.
Nevertheless, because both the initial and final states are con-
strained by equilibrium statistical mechanics �for which DFT
is very accurate�, the one-body density ��z , t� may not be a
very sensitive measure of the more complex dynamics that
arise from hydrodynamics.

VIII. DISCUSSION

As seen in Fig. 6, the short time velocity fluctuations are
dominated by thermal fluctuations at all Peclet numbers stud-
ied. The relative strength of the t=0 thermal and hydrody-
namic velocity fluctuations follows from simple scaling rela-
tions. Using

Re Pe =
�VSa�2

D0�
, �21�

which follows from the definitions of Pe and Re, together
with Eqs. �6� and �13�, the following relationship between
hydrodynamic and thermal fluctuations emerges:


VH
2


VT
2 � � Re Pe �

L

a

�c

�
�unscreened� , �22�

where the simplifying assumption that Mc� 4
3��ca

3, with a
the hydrodynamic rather than the physical radius, was also
made. The numerical prefactor � is small and can be ex-
tracted from Fig. 8 to be ��0.05 for fluctuations parallel to
the flow, and ��0.015 for fluctuations perpendicular to the
flow.

The above scaling holds for the unscreened regime; in the
screened regime the ratio of VH to VT will be smaller. Con-
sider, for example, the experimental results of Segrè et al.�9�.
If we take their fits to the scaling of the parallel fluctuations
in the screened regime, together with the estimates Re=5
�10−5 and Pe�2000, the scaling becomes

FIG. 11. �Color online� An equilibrated sediment in a planar slit
is turned upside down and allowed to sediment at Pe=4. Shown
here are the horizontal xy plane and the corresponding vertical xz
plane at six different times after field reversal. The dashed line
indicates the height z where the snapshots of the xy plane are taken.
A strong fingerlike inhomogeneity develops quickly, accompanied
by mazelike lateral pattern formation.
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FIG. 12. Time evolution �right to left� of the one-dimensional
density profile for sedimentation in a horizontal slit. � is normalized
such that it equals 1 for a homogeneously filled slit. The final state
�on the left� closely resembles the initial state �on the right�, but is
not shown for clarity.
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VH
2


VT
2 � �2/3 Re Pe �screened� �23�

for flows in the parallel direction. This suggests that this ratio
is small in the experiments, from 2�10−4 for �=10−4 to
0.02 for �=0.1. So despite the fact that the Pe number in
these experiments appears to be high, there is no need for an
effective gravitational “temperature” �10� to thermalize: at
short correlation times the usual thermal fluctuations are still
dominant. However, because the product Re Pe scales with
quite a high power of a, as fast as a7, the ratio 
VH

2 /
VT
2 will

increase rapidly for larger particles and gravitational tem-
perature will become essential for thermalization.

When comparing parallel and perpendicular components
it is important to mention that in numerical works where
thermal fluctuations are neglected very strong anisotropies in
velocity fluctuations, hydrodynamic relaxation times, and
diffusivities are often found. For example Ladd �40� finds
DH /DH,perp�25 in his lattice Boltzmann simulations. This
was attributed to periodic boundary conditions. However, we
also use periodic boundary conditions and find results much
closer to experimental results �a diffusivity ratio of �7�. We
therefore conclude that thermal fluctuations reduce the aniso-
tropy. This could be tested in Lattice Boltzmann simulations
by adding fluctuating stress �41,45�.

IX. CONCLUSION

In conclusion, we have studied the interplay of hydrody-
namic and thermal fluctuations using a simulation technique.
The two types of fluctuations appear to act independently, at
least in the unscreened regime. We find that hydrodynamic
interactions are important for the average sedimentation ve-
locity for Peclet numbers as low as 0.08, whereas thermal
fluctuations may remain important up to very large Peclet
numbers. Neither may be ignored for a significant range of
Peclet numbers. We also calculate the hydrodynamic contri-
butions to the diffusion coefficient, and find that with in-
creasing Pe number they rapidly become much larger than
the equilibrium diffusion coefficient. As an additional test of
the method we studied finite sedimentation in a horizontal
slit, and found characteristic lateral patterns in agreement
with recent experiments.
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